Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7753, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012128

RESUMO

Chemical inducer of dimerization (CID) modules can be used effectively as molecular switches to control biological processes, and thus there is significant interest within the synthetic biology community in identifying novel CID systems. To date, CID modules have been used primarily in engineering cells for in vitro applications. To broaden their utility to the clinical setting, including the potential to control cell and gene therapies, the identification of novel CID modules should consider factors such as the safety and pharmacokinetic profile of the small molecule inducer, and the orthogonality and immunogenicity of the protein components. Here we describe a CID module based on the orally available, approved, small molecule simeprevir and its target, the NS3/4A protease from hepatitis C virus. We demonstrate the utility of this CID module as a molecular switch to control biological processes such as gene expression and apoptosis in vitro, and show that the CID system can be used to rapidly induce apoptosis in tumor cells in a xenograft mouse model, leading to complete tumor regression.


Assuntos
Hepatite C , Simeprevir , Humanos , Camundongos , Animais , Simeprevir/farmacologia , Simeprevir/uso terapêutico , Hepatite C/tratamento farmacológico , Hepacivirus/metabolismo , Terapia Genética , Apoptose , Antivirais/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
2.
Oncoimmunology ; 6(3): e1280645, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405505

RESUMO

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is part of a system of signals involved in controlling T-cell activation. Targeting and agonizing GITR in mice promotes antitumor immunity by enhancing the function of effector T cells and inhibiting regulatory T cells. Here, we describe MEDI1873, a novel hexameric human GITR agonist comprising an IgG1 Fc domain, a coronin 1A trimerization domain and the human GITRL extracellular domain (ECD). MEDI1873 was optimized through systematic testing of different trimerization domains, aglycosylation of the GITRL ECD and comparison of different Fc isotypes. MEDI1873 exhibits oligomeric heterogeneity and superiority to an anti-GITR antibody with respect to evoking robust GITR agonism, T-cell activation and clustering of Fc gamma receptors. Further, it recapitulates, in vitro, several aspects of GITR targeting described in mice, including modulation of regulatory T-cell suppression and the ability to increase the CD8+:CD4+ T-cell ratio via antibody-dependent T-cell cytotoxicity. To support translation into a therapeutic setting, we demonstrate that MEDI1873 is a potent T-cell agonist in vivo in non-human primates, inducing marked enhancement of humoral and T-cell proliferative responses against protein antigen, and demonstrate the presence of GITR- and FoxP3-expressing infiltrating lymphocytes in a range of human tumors. Overall our data provide compelling evidence that MEDI1873 is a novel, potent GITR agonist with the ability to modulate T-cell responses, and suggest that previously described GITR biology in mice may translate to the human setting, reinforcing the potential of targeting the GITR pathway as a therapeutic approach to cancer.

3.
Br J Cancer ; 116(9): 1208-1217, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28334733

RESUMO

BACKGROUND: Major histocompatibility complex (MHC) class I chain-related protein A (MICA) and MHC class I chain-related protein B (MICB) are polymorphic proteins that are induced upon stress, damage or transformation of cells which act as a 'kill me' signal through the natural-killer group 2, member D receptor expressed on cytotoxic lymphocytes. MICA/B are not thought to be constitutively expressed by healthy normal cells but expression has been reported for most tumour types. However, it is not clear how much of this protein is expressed on the cell surface. METHODS: Using a novel, well-characterised antibody and both standard and confocal microscopy, we systematically profiled MICA/B expression in multiple human tumour and normal tissue. RESULTS: High expression of MICA/B was detected in the majority of tumour tissues from multiple indications. Importantly, MICA/B proteins were predominantly localised intracellularly with only occasional evidence of cell membrane localisation. MICA/B expression was also demonstrated in most normal tissue epithelia and predominantly localised intracellularly. Crucially, we did not observe qualitative differences in cell surface expression between tumour and MICA/B expressing normal epithelia. CONCLUSIONS: This demonstrates for the first time that MICA/B is more broadly expressed in normal tissue and that expression is mainly intracellular with only a small fraction appearing on the cell surface of some epithelia and tumour cells.


Assuntos
Antígenos de Histocompatibilidade Classe I/biossíntese , Neoplasias/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Citoplasma/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Células Matadoras Naturais/imunologia , Neoplasias/classificação , Neoplasias/patologia , Linfócitos T Citotóxicos/metabolismo
4.
Clin Cancer Res ; 23(13): 3416-3427, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069723

RESUMO

Purpose: To generate and characterize a murine GITR ligand fusion protein (mGITRL-FP) designed to maximize valency and the potential to agonize the GITR receptor for cancer immunotherapy.Experimental Design: The EC50 value of the mGITRL-FP was compared with an anti-GITR antibody in an in vitro agonistic cell-based reporter assay. We assessed the impact of dose, schedule, and Fc isotype on antitumor activity and T-cell modulation in the CT26 tumor model. The activity of the mGITRL-FP was compared with an agonistic murine OX40L-FP targeting OX40, in CT26 and B16F10-Luc2 tumor models. Combination of the mGITRL-FP with antibodies targeting PD-L1, PD-1, or CTLA-4 was analyzed in mice bearing CT26 tumors.Results: The mGITRL-FP had an almost 50-fold higher EC50 value compared with an anti-murine GITR antibody. Treatment of CT26 tumor-bearing mice with mGITRL-FP-mediated significant antitumor activity that was dependent on isotype, dose, and duration of exposure. The antitumor activity could be correlated with the increased proliferation of peripheral CD8+ and CD4+ T cells and a significant decrease in the frequency of intratumoral Tregs. The combination of mGITRL-FP with mOX40L-FP or checkpoint inhibitor antagonists enhanced antitumor immunity above that of monotherapy treatment.Conclusions: These results suggest that therapeutically targeting GITR represents a unique approach to cancer immunotherapy and suggests that a multimeric fusion protein may provide increased agonistic potential versus an antibody. In addition, these data provide, for the first time, early proof of concept for the potential combination of GITR targeting agents with OX40 agonists and PD-L1 antagonists. Clin Cancer Res; 23(13); 3416-27. ©2017 AACR.


Assuntos
Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Melanoma Experimental/imunologia , Proteínas de Fusão Oncogênica/administração & dosagem , Fatores de Necrose Tumoral/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Modelos Animais de Doenças , Proteína Relacionada a TNFR Induzida por Glucocorticoide/administração & dosagem , Humanos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/imunologia , Camundongos , Ligante OX40 , Proteínas de Fusão Oncogênica/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fatores de Necrose Tumoral/agonistas , Fatores de Necrose Tumoral/genética
5.
Proc Natl Acad Sci U S A ; 104(26): 10830-4, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17566106

RESUMO

Mitochondrial carriers are believed widely to be dimers both in structure and function. However, the structural fold is a barrel of six transmembrane alpha-helices without an obvious dimerisation interface. Here, we show by negative dominance studies that the yeast mitochondrial ADP/ATP carrier 2 from Saccharomyces cerevisiae (AAC2) is functional as a monomer in the mitochondrial membrane. Adenine nucleotide transport by wild-type AAC2 is inhibited by the sulfhydryl reagent 2-sulfonatoethyl-methanethiosulfonate (MTSES), whereas the activity of a mutant AAC2, devoid of cysteines, is unaffected. Wild-type and cysteine-less AAC2 were coexpressed in different molar ratios in yeast mitochondrial membranes. After addition of MTSES the residual transport activity correlated linearly with the fraction of cysteine-less carrier present in the membranes, and so the two versions functioned independently of each other. Also, the cysteine-less and wild-type carriers were purified separately, mixed in defined ratios and reconstituted into liposomes. Again, the residual transport activity in the presence of MTSES depended linearly on the amount of cysteine-less carrier. Thus, the entire transport cycle for ADP/ATP exchange is carried out by the monomer.


Assuntos
Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Nucleotídeos de Adenina/metabolismo , Cinética , Mesilatos/farmacologia , Conformação Proteica , Estrutura Quaternária de Proteína , Reagentes de Sulfidrila/farmacologia
6.
J Mol Biol ; 371(2): 388-95, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17572439

RESUMO

Most mitochondrial carriers carry out equimolar exchange of substrates and they are believed widely to exist as homo-dimers. Here we show by differential tagging that the yeast mitochondrial ADP/ATP carrier AAC2 is a monomer in mild detergents. Carriers with and without six-histidine or hemagglutinin tags were co-expressed in defined molar ratios in yeast mitochondrial membranes. Their specific transport activity was unaffected by tagging or by co-expression. The co-expressed carriers were extracted from the membranes with mild detergents and purified rapidly by affinity chromatography. All of the untagged carriers were in the flow-through of the affinity column, whereas all of the tagged carriers bound to the column and were eluted subsequently, showing that stable dimers, consisting of associated tagged and untagged carriers, were not present. The specific inhibitors carboxyatractyloside and bongkrekic acid and the substrates ADP, ATP and ADP plus ATP were added during the experiments to determine whether lack of association might have been caused by carriers being prevented from cycling through the various states in the transport cycle where dimers might form. All of the protein was accounted for, but stable dimers were not detected in any of these conditions, showing that yeast ADP/ATP carriers are monomeric in detergents in agreement with their hydrodynamic properties and with their structure. Since strong interactions between monomers were not observed in any part of the transport cycle, it is highly unlikely that the carriers function cooperatively. Therefore, transport mechanisms need to be considered in which the carrier is operational as a monomer.


Assuntos
Detergentes/farmacologia , Digitonina/farmacologia , Translocases Mitocondriais de ADP e ATP/isolamento & purificação , Translocases Mitocondriais de ADP e ATP/metabolismo , Octoxinol/farmacologia , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Cromatografia de Afinidade , Expressão Gênica , Translocases Mitocondriais de ADP e ATP/genética , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 103(44): 16224-9, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17056710

RESUMO

Mitochondrial carriers are believed widely to be homodimers both in the inner membrane of the organelle and in detergents. The dimensions and molecular masses of the detergent and protein-detergent micelles were measured for yeast ADP/ATP carriers in a range of different detergents. The radius of the carrier at the midpoint of the membrane, its average radius, its Stokes' radius, its molecular mass, and its excluded volume were determined. These parameters are consistent with the known structural model of the bovine ADP/ATP carrier and they demonstrate that the yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Therefore, models of substrate transport have to be considered in which the carrier operates as a monomer rather than as a dimer.


Assuntos
Detergentes , Translocases Mitocondriais de ADP e ATP/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Bovinos , Cromatografia em Gel , Micelas , Translocases Mitocondriais de ADP e ATP/isolamento & purificação , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...